研究背景
study background
近年来,钙钛矿太阳能电池(PSCs)得到了广泛的关注,并取得了惊人的快速发展,器件的光电转换效率(PCE)在短短几年内从3.8%大幅度提升到了25.2%。然而由于钙钛矿薄膜内部存在大量晶界和缺陷,导致PSCs的长期稳定性较差,限制了其商业化应用。设计新型功能添加剂材料被认为是一种有效地解决策略。MOF纳米晶具有良好的机械稳定性、交联的孔道、高的比表面积以及优异的可溶液加工特性,有作为功能性中间层或添加剂的应用潜力。此外,通过调节金属离子/簇和有机配体的组合,可以控制MOF纳米晶的能带结构和光伏特性以满足相应器件的实际需求。然而,相对苛刻的合成过程限制了MOF纳米晶在钙钛矿太阳能电池(PSCs)领域中的发展。特别是目前针对调控钙钛矿层和设计钙钛矿/MOFs异质结的研究仍然为数不多。
In recent years, the solar cell (PSCs) of the mine has received extensive attention and has achieved alarming rapid development, with the PV conversion efficiency of the device (PCE) having risen significantly from 3.8 per cent to 25.2 per cent in just a few years. Moreover, by regulating the combination of metal ion/strings and organic formulations, the long-term stability of the PSCs has been weak, limiting their commercialization. Designing new functional additives is considered an effective solution strategy. MOF has good mechanical stability, interconnected holes, high surface sizes, and excellent soluble processing properties, with the potential to be applied as functional intermediates or additives.
Heterojunction Incorporating Perovskite and Microporous Metal-Organic Framework Nanocrystals for Efficient and Stable Solar Cells
Xuesong Zhou, Lele Qiu, Ruiqing Fan,* Jian Zhang, Sue Hao, Yulin Yang*
Nano-Micro Lett.(2020)12:80
https://doi.org/10.1007/s40820-020-00417-1
本文亮点
1.在温和的条件下合成了尺寸可调的微孔In-BTC纳米晶。
1 . synthesizes micro-holes in-BTC nanomix under mild conditions.
2.钙钛矿/In-BTC异质结薄膜具有优化的形貌/结晶度和减少的晶界/缺陷。
2. / In-BTC heterogeneous membranes with and reduced crystal/deficit .
3.In-BTC修饰的PSCs表现出高达20.87%的PCE以及优异的长期稳定性。
3. In-BTC-modified PSCs show up to 20.87% of PPE and excellent long-term stability .
内容简介
哈尔滨工业大学范瑞清教授课题组和杨玉林教授课题组在本文中采用简单的溶剂热合成法,在温和的条件下制备了稳定的微孔MOF纳米晶(In-BTC)。随后,以In-BTC为钙钛矿前驱体溶液的添加剂,系统地研究了纳米晶含量与相应的钙钛矿/In-BTC异质结基PSCs的光伏性能之间的关系。结果表明,钙钛矿/In-BTC异质结薄膜具有优化的形貌/结晶度和减少的晶界/缺陷,有效地增强了相应PSCs的界面电接触、光响应和对周围环境的抗干扰能力。最优的钙钛矿/In-BTC异质结基PSCs表现出高达20.87%的功率转换效率(PCE),而且该器件在25°C和相对湿度约40%的环境中无封装储存28天后仍可以保持初始效率值的85%。
Following the introduction of simple soluble thermal synthesis in Harbin Industrial University, Professor Van Ri Qing and Professor Yang Yulin's team produced stable micro-hole MOF nanocrystals (In-BTC) under moderate conditions. Subsequently, In-BTC was used as an additive to pre-mine pre-disposal dispersive solutions, systematically studied the relationship between nanocrystal content and the corresponding photovoltaic PSCs. The results showed that the thorium ore/In-BTC helium film had an optimal shape/crystality and reduced crystals/deficiency, effectively enhancing the interface of the respective PSCs. The best thi-orium/In-BTC helometer PSCs showed a performance of up to 20.87 per cent (PCE) and that the device could maintain an initial efficiency value of 85 per cent of
after 28 days of unsealed storage in 25°C and about 40% of relative humidity.
图文导读
graphic guide
IIn-BTC晶体样品的简易尺寸调节
I/strong> In-BTC crystal sample simple size adjustment
将硝酸铟(In(NO3)3·5H2O)和1, 3, 5-苯甲酸(H3BTC)溶解于H2O/CH3CN混合溶剂中,在温和的条件(85℃、6h)下制备了[In12O(OH)16(H2O)5(btc)6]n(In-BTC)晶体。值得注意的是,In-BTC晶体尺寸可以通过简单地控制混合溶剂中H2O和CH3CN的体积比来调节(9:1对应~5 μm,8:2对应~1 μm,7:3对应~150 nm)。如图1(a-c)所示,在相应的SEM图像中可以清晰地观察到尺寸均一的具有六角棱镜薄片状形貌的In-BTC晶体样品。图1(d)为不同晶体尺寸的In-BTC样品的粉末X射线衍射(PXRD)图谱。所有的PXRD测试图谱均与根据In-BTC晶体学数据得到的模拟图谱吻合良好,表明合成样品具有较高的结晶度和相纯度。
The crystals of [In12O(OH)16(H2O)5(btc)n (In-BTC)]n (In-BTC) can be clearly observed in the corresponding SEM images, as shown in figure 1 (a-c), with a six-angle translator-like plate size of the In-BTC crystal size can be adjusted by the size ratio of H2O and CH3CN in simple control of the mixture (9:1 ~ 5 m, 8:2 ~ 1 m, 7:3 ~ 150 nm).
图1. In-BTC晶体样品的简易尺寸调节。(a-c)不同晶体尺寸In-BTC样品的SEM图像;(d)相应的PXRD图谱。
Figure 1. Simple size adjustment for In-BTC crystal samples. (a-c) Sem images of different crystal sizes of In-BTC samples; (d) corresponding PXRD profiles.
IIIn-BTC纳米晶的基础表征
II In-BTC Namythrys base signs
为了考察In-BTC样品的热稳定性,在30~500 ℃温度范围内,升温速率为2 ℃/min的空气气氛下,对制备样品进行了热重分析(TGA)。In-BTC样品经过不同温度热处理12小时后的PXRD图谱进一步证明了其在200℃以下的结构稳定性(图2(b))。这也确保了In-BTC纳米晶作为添加剂在组装PSCs器件过程中不会发生框架坍塌。
In order to examine the thermal stability of the In-BTC samples, a thermal weight analysis of the prepared samples (TGA) was carried out in the atmosphere of 2 °C/min at a temperature range of 30 ~ 500 °C. The PXRD profile of the In-BTC samples, after 12 hours of thermal treatment at different temperatures, provides further evidence of their structural stability below 200 °C (figure 2 (b)). This also ensures that the In-BTC nanocrystals do not collapse as additives during the assembly of PSCs.
随后,通过N2吸附-脱附测试表征了所合成的In-BTC纳米晶的多孔属性。图2(c)呈现典型的I型等温线,这与微孔的吸附过程相对应。同时,BET比表面积估算为331.62 m2/g,得到的两个微孔直径(~0.7 nm和~1.1 nm)与In-BTC单晶结构解析中观察到的空腔尺寸相吻合。骨架中相互交联的微孔有利于钙钛矿前驱体溶液的渗透,增强In-BTC纳米晶和钙钛矿之间的兼容性。同时,In-BTC纳米晶的极性位点可以预先与Pb2+离子结合,诱导钙钛矿在In-BTC规则的空腔内优先成核,并在钙钛矿成膜过程中同步调节结晶速率,提高薄膜的形貌/结晶度并减少其晶界/缺陷。为了证明这一点,我们记录了PbI2存在下In-BTC纳米晶的X射线光电子能谱(XPS)。如图3(e,f)所示,原始的In-BTC样品在与PbI2混合后,O 1s的电子结合能从531.2 eV偏移到532.0 eV,这归因于In-BTC的末端氧位点与Pb2+离子之间的配位相互作用。
Then, through the N2 sorbent-decording table, the synthetic multi-hole properties of the In-BTC nanocrystal are expressed. Figure 2 (c) presents the typical temperature line of type I, which corresponds to the sorbrance process. Meanwhile, the BET scale area is estimated at 331.62 m2/g, with two micro-perforcing diameters (~0.7 nm and ~1.1 nm) corresponding to the hollow size observed in the In-BTC crystal structure resolution. The co-connected micro-holes in the skeleton contribute to the penetration of the pre-sortium disassembly solution, enhancing the compatibility between the In-BTC nanocrynch and the sorbium. At the same time, the In-BTC polar position is estimated to be combined with the Pb2+ion, leading the mine to the inner core nucleotide observed in the In-BTC rules and to synchronize the crystal rate of crystallometers to the end of the TC2 (in-B2-P2-P2-P2-EX), which is shown at the end of the electronic version of the In-B2-B2-P2-P2-D.
图2. In-BTC纳米晶的基本表征。(a)TGA曲线。(b)不同温度热处理后的In-BTC样品的PXRD图谱。(c)N2吸附-脱附等温线;(d)孔径分布。原始In-BTC以及In-BTC和PbI2混合物的XPS(e)全谱和(f)O 1s谱。
Figure 2. Basic indicators of the In-BTC nanocrystals. (a) TGA curves. (b) PXRD profiles of the In-BTC samples after heat treatment at different temperatures. (c) N2 adsorption-decoration of temperature lines; (d) aperture distribution. Original In-BTC and in-BTC and PbI2 mixtures XPS (e) full spectrum and (f) O1s spectrum.
以往的文献报道表明,紫外辐射会对损害钙钛矿薄膜并降低其稳定性。如图3(a)所示,In-BTC纳米晶在紫外区域表现出强吸收,可以对高能光子进行有效滤除。此外,In-BTC样品的光致发光光谱(PL)显示其最大发射峰在波长415 nm处,实现了紫外辐射的下转换。同时,从In-BTC样品的PL发射光谱与钙钛矿薄膜的UV-vis吸收光谱的高度重叠来看,二者之间应该存在福斯特共振能量转移效应(图3(b))。因此,利用钙钛矿/In-BTC异质结作为光捕获层,对增强PSCs的光响应具有重要意义。
In addition, the photoluminous spectrum (PL) of the In-BTC sample shows that its largest emission peak was converted below wavelength 415 nm. At the same time, in view of the high overlap between the PL emission spectrum of the In-BTC sample and the UV-Vis absorption spectrum of the UV-Vis absorption spectrum of the membrane, there should be a Fosterer Resonance Energy Transfer effect (Figure 3 (b)). It is therefore important to enhance the light response of PSCs by using the Pyre/In-BTC hemolysis as a photo trap.
如图3(c)所示,利用循环伏安法(CV)测定了In-BTC纳米晶的电化学氧化还原电位为0.23 V vs. Fc/Fc+(二茂铁/二茂铁+)。In-BTC的最高占据分子轨道能级(EHOMO)为-5.33 eV,处于钙钛矿(-5.80 eV)和空穴运输材料(Spiro-OMeTAD: -5.11 eV)之间。高度匹配的EHOMO值表明,In-BTC纳米晶的引入可以促进钙钛矿层到空穴传输层(HTLs)的空穴载流子提取(图3(d)),进一步证明钙钛矿/In-BTC异质结应用于PSCs中的可行性。
As shown in figure 3 (c), the electrochemical oxidation reduction level of the In-BTC nanocrystal with electrochemical oxidation level of 0.23 V vs. Fc/Fc+ (methane/methane+) was determined using the recycled voltage method (CV). In-BTC, the highest-occupancy molecular orbital energy level (EHOMO) was 5.33 eV and was between the mine (-5.80 eV) and the air transport material (Spiro-OMeTAD: -5.11 eV). The high-matched EHOMO value suggests that the introduction of the In-BTC nanocrys could facilitate the extraction of the cave currents from the mine layer to the air transport layer (HTLs) (figure 3 (d)), further demonstrating the feasibility of applying the synonyms to PSCs.
图3. 基于钙钛矿/In-BTC异质结的n-i-p型PSCs性能。(a)In-BTC纳米晶的UV-vis吸收光谱。(b)In-BTC纳米晶的PL光谱和钙钛矿薄膜的UV-vis吸收光谱。(c)In-BTC纳米晶的CV曲线。(d)以钙钛矿/In-BTC异质结作为集光层的PSCs的能级图。(e)钙钛矿/In-BTC异质结基PSCs的J-V曲线插图显示了PSCs的横截面SEM图像。(f)从20个PSCs器件中获得的最佳和平均PCE值。
Figure 3. Performance of N-i-p PSCs based on the hemogenesis of the mine/In-BTC. (a) UV-vis absorption spectrum of the In-BTC nanomistry. (b) PL spectrum of the In-BTC nanomistry and UV-vis absorption spectrum of the membrane of the mine. (c) CV curve of the In-BTC nanomistry. (d) energy level map of the PSCs using the silicon/In-BTC hemosphere. (e) J-V curve illustrations of the PSCs of the In-BTC hemography display the best and average PEC values obtained from 20 PSCs.
III基于钙钛矿/In-BTC异质结的n-i-p PSCs的器件性能
(iii)(strong>) device performances based on n-i-p-PSCs > > > > >.
为了确定钙钛矿/In-BTC异质结的最优参数,选用了五种不同的In-BTC纳米晶添加浓度与原始的钙钛矿前驱体溶液进行对比。相应的光电性能如图3(e,f)所示。显然,In-BTC纳米晶添加浓度为2.0 mg/mL时,相应PSCs器件的性能最佳,PCE值为20.87%,开路电压(Voc)、短路电流密度(Jsc)和填充系数(FF)分别为1.12 V、23.55 mA/cm2和0.79。该光伏性能明显优于未添加In-BTC的原始器件。此外,钙钛矿/In-BTC异质结基PSCs (2.0 mg/mL)显示出比原始器件(18.19%)更高的平均PCE (19.63%),证明其具有良好的可重复性。
In order to determine the optimal parameters of the helium ore/In-BTC helium, five different In-BTC nanocrystal additive concentrations were selected in comparison with the original pre-sort drive solution. The corresponding photoelectric properties are shown in figure 3 (e, f). It is clear that when the In-BTC nanocrystal adds a concentration of 2.0 mg/mL, the corresponding PSCs have the best performance, the PSCs have a PEC value of 20.87 per cent, the open circuit voltage (Voc), the short circuit current density (Jsc) and the filling factor (FF), respectively, are clearly better than the original devices of In-BTC. Moreover, the PSCs (2.0 mg/mL) show a higher average PCE (19.63 per cent) than the original instruments (18.19 per cent) and demonstrate good replicability.
为了研究PSCs在光捕获层界面的电荷动力学,分别测试了瞬态光电流和光电压衰减曲线。In-BTC修饰钙钛矿层的PSC显示出比原始器件更快速的光电流衰减,表明界面处发生了更加有效的载流子迁移,这可以归因于In-BTC与钙钛矿和空穴传输材料之间的高度能级匹配。此外,In-BTC修饰的PSC显示出比原始器件明显缓慢的光电压衰减,表明以In-BTC纳米晶作为钙钛矿层添加剂可以实现更长的载流子寿命,这可以解释为In-BTC对钙钛矿晶体薄膜的缺陷钝化作用来,从而有效地抑制了光生载流子的复合。
In order to study the power dynamics of PSCs in the optical capture layer interface, transient light currents and photovoltaic decomposition curves have been tested separately. The PSC of the In-BTC modifier millet has shown a more rapid decrease in photovoltage than the original device, indicating a more effective transport of host children at the interface, which can be attributed to the high level of energy matching between the In-BTC and the thorium mine and cave transfer material. In addition, the In-BTC modifier PSC has shown a significantly slower decline in photovoltaic voltage than the original device, showing that the use of In-BTC as an adder to the thorium layer can lead to a longer lifetime of carriers, which can be interpreted as the passivation of the In-BTC's faultynchry membranes, thereby effectively curbing the compound of photo-borne fluids.
钙钛矿薄膜内部的缺陷也是迟滞现象的一个主要诱因,而迟滞现象的存在会导致不精确的器件性能评估。为了研究相应的PSCs的迟滞行为,分别从正向和反向扫描测量了器件的J-V曲线。结果表明,基于钙钛矿/In-BTC异质结的器件比原始器件(0.14)的迟滞指数(HI)要低(0.11),进一步证明了In-BTC纳米晶对钙钛矿薄膜的缺陷钝化作用。
Deficiencies in the interior of the membrane are also a major contributing factor to the slowness, which can lead to inaccurate instrument performance assessments. For the study of the corresponding PSCs, the J-V curve of the device was measured from both a positive and a reverse scan. The results show that the delay index (HI) based on the transmutation of the mine/In-BTC is lower than the original device (0.14) (0.11) and further evidence of the passivation effect of the In-BTC nanocrystomy on the membranes.
IVIn-BTC纳米晶对钙钛矿薄膜的性能优化
研究中发现不同In-BTC添加浓度修饰的PSCs在光伏性能尤其是FF上表现出显著差异,这促使我们进一步研究了相应的钙钛矿/In-BTC异质结薄膜的性能。图4(a)显示了不同薄膜的PXRD图谱,随着In-BTC添加浓度的增加,钙钛矿的(100)峰和PbI2的(001)峰的强度比明显增强,表明In-BTC纳米晶的引入有利于提高钙钛矿薄膜的结晶度。图4(b-d)为相应薄膜的顶视SEM图像,从中可以清楚地观察到钙钛矿/In-BTC薄膜的晶粒尺寸明显大于原始薄膜的晶粒尺寸,进一步证明了掺杂In-BTC纳米晶对提高衍生钙钛矿薄膜结晶度的积极作用。同时,钙钛矿薄膜的整体形貌也有一定程度的改善。因此,通过向钙钛矿前驱液中引入In-BTC纳米晶体有效地减少了钙钛矿薄膜的晶界和缺陷,从而改善了薄膜内部的载流子迁移以及相关界面的电接触。然而,过量添加In-BTC纳米晶(4.0 mg/mL或8.0 mg/mL)会导致钙钛矿与In-BTC的相分离,直观表现为薄膜形貌的恶性变化,如图5(b)、5(c)所示。同时,在相应的PXRD图谱中也可以观察到分别属于In-BTC (002)和(202)晶面的新的衍射峰5.37°和16.45°。图5(e)的SEM-EDS图像显示了最优钙钛矿/In-BTC异质结薄膜(2.0 mg/mL)的元素分布。显然,得益于In-BTC添加剂的纳米级粒径和相互交联的微孔,In和Pb元素均呈现均匀分布。
The study found significant differences in the photovoltaic properties of PSCs with different distillations in In-BTC, in particular in FF. Figure 4(a) shows the PXRD profiles of different membranes, with the increase in concentrations of In-BTC peaks (100) and PbI2 peaks, indicating that the introduction of In-BTC nanometals is conducive to increasing the crystallization of the membranes, in particular FF. Figure 4(b-d) is the image of the corresponding membranes, from which it is clear that the membranes of the membranes in the membranes are larger than the membranes in the original (In-BTC) membranes, further demonstrating the positive effects of the membranes in increasing the membranes of the membranes (In-BTC) and of the membranes in the new membranes (In-B2-m2) and of the mem-obranch (In-T2-T2), which also shows some improvement in the image of the mem3 of the mem2 and the mem3 of the mem.
最优掺杂比例(2.0 mg/mL)的钙钛矿/In-BTC异质结基PSCs的优异光伏性能激励我们进一步研究其长期稳定性。在室温和相对湿度(RH)为~40%的环境中记录了未封装设备的PCE衰减曲线。储存28天后,由于异质结薄膜更优异的形貌/结晶度和更少的晶界/缺陷,In-BTC修饰的太阳能电池的PCE稳定在初始PCE的85.5%,而原始器件的PCE下降到61.3%。这一结果清楚地反映了钙钛矿/In-BTC异质结也可以有效地增强PSCs长期稳定性。
After 28 days of storage, the PEC of the In-BTC-modified solar cells stabilized at 85.5% of the initial PEC, while the PEC of the original device dropped to 61.3% clearly reflects that the PSC/In-BTC heterogenesis can also contribute effectively to the long-term stability of the PSCs.
图4. In-BTC纳米晶对钙钛矿薄膜的性能优化。(a)原始钙钛矿薄膜和加入不同浓度In-BTC纳米晶的钙钛矿/In-BTC异质结薄膜的PXRD图谱。(b-d)相应薄膜的SEM图像。(e)最优钙钛矿/In-BTC异质结膜(2.0 mg/mL)的元素映射图像。
Figure 4. Optimization of performance of the membrane membrane in In-BTC nanocrystals. (a) Original membrane and PXRD drawings with different concentrations of the membranes in In-BTC nanocrystals/In-BTC hemonic membranes. (b-d) Sem images of the corresponding membranes. (e) Elemental mapping images of the best mine/In-BTC hemonic membranes (2.mg/mL).
作者简介
范瑞清
{\bord0\shad0\alphaH3D}Farishen
本文通讯作者
This post is part of our special coverage Syria Protests 2011.
哈尔滨工业大学教授、博导
▍主要研究领域
Main areas of research
1. 有机发光材料亚胺类金属配合物的设计合成。
Design and synthesis of metal compounds of the ammonium-type organic luminous material.
2. 超分子配位聚合物的设计与合成。
Design and synthesis of supermolecular bit polymers.
▍主要研究成果
Main research results
近五年来,在Angew. Chem. Int. Ed.、Adv. Energy Mater.和ACS Appl. Mater. Interfaces等高水平期刊上发表的SCI学术论文100余篇;主持国家自然基金面上项目4项。
Over the past five years, more than 100 SCI academic papers have been published in high-quality journals such as Angel.Chem. Int. Ed., Adv. Energy Mater. and ACS Appl. Mater. Interfaces; and chaired four projects in the National Fund for Nature.
▍个人主页:
homepage:
http://homepage.hit.edu.cn/fanruiqing
杨玉林
{\bord0\shad0\alphaH3D}Strange {\bord0\shad0\alphaH3D}Strange {\bord0\shad0\alphaH3D}Strange
本文通讯作者
This post is part of our special coverage Syria Protests 2011.
哈尔滨工业大学教授、博导
▍主要研究领域
Main areas of research
1. 新型钙钛矿与染料敏化太阳能电池界面材料与器。
1. New types of thorium ore and dye-sensitive solar cell interface materials and instruments.
2. 新型含能材料的合成工艺、组装与性能。
2. Synthetic processes, assembly and performance of new energy-containing materials.
▍主要研究成果
Main research results
近五年来,在Angew. Chem. Int. Ed.、Adv. Energy Mater.、ACS Appl. Mater. Interfaces和J. Power Source等高水平期刊上发表的SCI学术论文80余篇,主持多项国家自然基金面上项目。
Over the past five years, more than 80 SCI academic papers have been published in high-level journals such as Angel.Chem. Int. Ed., Adv. Energy Mater., ACS Appl. Mater. Interfaces and J. Power Source, which have hosted several national natural fund projects.
▍个人主页:
homepage:
http://homepage.hit.edu.cn/yangyulin
Nano-Micro Letters 是上海交通大学主办的英文学术期刊,主要报道纳米/微米尺度相关的最新高水平科研成果与评论文章及快讯,在 Springer 开放获取出版。
Nano-Micro Letters, an English-language academic journal sponsored by Shanghai Transport University, features recent high-level scientific findings and review articles and newsletters related to nano/microscales, and is available for publication at Springer.
来源:nanomicroletters
Source: nanomicrotters
"CGIA企业需求服务中心"是由石墨烯联盟(CGIA)成立的,以推动石墨烯下游应用为己任,致力于搭建供需对接平台的服务部门。中心着力于解决需求痛点,创新服务模式,为企业提供专业、高效、精准的需求对接服务,主张以解决需求痛点,提升企业价值,实现共同成长为目标;以支撑企业精准把握市场定位,推动产品技术转型升级,加快技术产品应用推广及商业化,助力区域新旧动能转换为价值体现。我们期待怀揣梦想,志同道合的朋友找到我们,一起去征服梦想和未来~
注册有任何问题请添加 微信:MVIP619 拉你进入群
打开微信扫一扫
添加客服
进入交流群
发表评论